Weak exponential schemes for stochastic differential equations with additive noise
نویسنده
چکیده
This paper develops weak exponential schemes for the numerical solution of stochastic differential equations (SDEs) with additive noise. In particular, this work provides first and second-order methods which use at each iteration the product of the exponential of the Jacobian of the drift term with a vector. The article also addresses the rate of convergence of the new schemes. Moreover, numerical experiments illustrate that the numerical methods introduced here are a good alternative to the standard integrators for the long time integration of SDEs whose solutions by the common explicit schemes exhibit instabilities.
منابع مشابه
Numerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملWeak Convergence of Finite Element Approximations of Linear Stochastic Evolution Equations with Additive Noise Ii. Fully Discrete Schemes
We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element met...
متن کاملAPPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملThe Ginzburg-Landau Equations for Superconductivity with Random Fluctuations
Thermal fluctuations and material inhomogeneities have a large effect on superconducting phenomena, possibly inducing transitions to the non-superconducting state. To gain a better understanding of these effects, the Ginzburg–Landau model is studied in situations for which the described physical processes are subject to uncertainty. An adequate description of such processes is possible with the...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کامل